
 

 
 

GraphKey 
 
 

A Microbiology Lab Information Management and 
Visualization System 

 
 

Senior Design Project: Final Report 
November 2020 

 
Team 29: Brittany McPeek, Benjamin Vogel, Rob Reinhard, Kyle 

Gansen, Ben Alexander, and Samuel Jungman 
 

Technical Advisor: Thomas Daniels 
 

Client: Karrie Daniels 
 

Team Website: https://sddec20-29.sd.ece.iastate.edu 
  

 

https://sddec20-29.sd.ece.iastate.edu/


 

Executive Summary 
Development Standards & Practices Used 

● Detailed Use Case diagrams and User Stories 
● Simple Design 
● Pair Programming 
● Heavy documentation in both code and manuals, updated regularly 
● Single coding standard (will use PEP-8, a coding style for Python) 
● Frequent refactoring 
● Simple APIs 
● Construct and maintain a user manual for non-technical clients 

Summary of Requirements 

● System should support importation of large amounts of data in a reasonable 
amount of time from sources such as CSV and Excel 

● System should be able to abstract the data and place them into modifiable graphs 
● System should support exporting those graphs to be published into research 

papers 
● System should be able to maintain past data and support modifications and the 

addition of new data 
● System will be written in Python 
● System should be easy to understand and use by users with little-to-no 

background in programming 
● System should be maintainable by 1 to 2 IT personnel 

Applicable Courses from Iowa State University Curriculum  

● COMS 309 
● COMS 227 
● COMS 228 
● COMS 363 

New Skills/Knowledge acquired that was not taught in courses 

● Graphing and graph visualization 
● Python and Python Libraries 
● Data management  

 1 



 

Table of Contents 
 

Final Report 
 

Introduction 8 
Acknowledgement 8 
Problem and Project Statement 8 
End Goal 9 
Intended Users and Uses 9 
Operational Environment 9 
Assumptions and Limitations 9 
Related Products and Literature 10 

Project Design 11 
Requirements 11 
Old Design Approach 12 
New (Final) Design Approach 13 

Frontend (Graphical User Interface) 15 
Backend 16 

Implementation Details 19 
Plotly 19 
Pandas 19 
PyQt5 19 

      PyDrive 20 
Unittest 20 
Implementation Standards 20 
Source Code and Documentation 20 

Testing Process 21 
Unit Testing 21 
Integration Testing 22 

Results 23 

Conclusion 25 

Appendices 26 
Appendix 1 - Previous/Alternate Design Versions 26 

 2 



 

Alternate Design 1: Machine Learning Integration 26 
Alternate Design 2: Web Application + Database 26 
Alternate Design 3: Raspberry Pi 27 

Appendix 2 - Other Considerations 27 
Independent Projects (Lack of cohesion) 27 
Architecture Shift (Subsequent Refactor) 28 

References 29 
  

 3 



 

User Guide 
 

1. Overview 31 
2. Getting Started 31 

2.1 Obtaining the Application 31 
2.2 Running the Application 31 
      2.2.1 Requirements 31 
      2.2.2 Installing Requirements 31 
      2.2.3 Starting the Application 32 

3. Projects 33 
3.1 Creating a New Project 33 
3.2 Opening a Project 34 

4. Importing Data 34 
4.1 Importing New Data 34 
4.2 Importing Revised Data 35 

5. Selecting Workbook, Edition, and Sheet 37 

6. Generating Graphs 37 

7. Viewing Graphs 39 

8. Scatter Plots 39 
8.1 Selecting Data 39 

      8.2 Example Scatter Plot 40 

9. Bar Graphs and Box Plots 41 
9.1 Selecting Data 41 

      9.2 Example Bar Graph 42 
      9.3 Example Box Plot 42 

10. Editing Graphs 43 

11. Graph Preferences 43 

12. Graph Templates 46 

13. Exporting Graphs 48 
      13.1 Exporting to the Local Machine 48 
      13.2 Exporting to Google Drive 50 

14. Appendix 53 

 4 



 

      14.1 Reference Links 53 
      14.2 About Us 53 
 

 

 
  

 5 



 

Copy of Design Document From Last Semester 
 

1. Introduction 57 
Acknowledgement 57 
Problem and Project Statement 57 
Operational Environment 57 
Requirements 57 
Intended Users and Uses 58 
Assumptions and Limitations 58 
Expected End Product and Deliverables 59 

2. Specifications and Analysis 61 
Proposed Approach 61 
Design Analysis 62 
Development Process 62 
Conceptual Sketch 62 

3. Statement of Work 64 
3.1 Previous Work And Literature 64 
3.2 Technology Considerations 64 
3.3 Task Decomposition 64 
3.4 Possible Risks And Risk Management 65 
3.5 Project Proposed Milestones and Evaluation Criteria 65 
3.6 Project Tracking Procedures 66 
3.7 Expected Results and Validation 66 

4. Project Timeline, Estimated Resources, and Challenges 67 
4.1 Project Timeline 67 
4.2 Feasibility Assessment 67 
4.3 Personnel Effort Requirements 68 
4.4 Other Resource Requirements 69 
4.5 Financial Requirements 69 

5. Testing and Implementation 70 
Interface Specifications 70 
5.2 Hardware and software 70 
5.3 Functional Testing 70 

5.3.1 Unit Tests 70 

 6 



 

5.3.2 Integration Tests 71 
5.4 Non-Functional Testing 72 
5.5 Process 72 
5.6 Results 73 

6. Closing Material 74 
6.1 Conclusion 74 
6.2 References 74 

  

 7 



 

Introduction 

Acknowledgement  
Our group would like to acknowledge and thank Thomas Daniels for his guidance, 
support, and technical advice throughout this project. Our group would also like to 
acknowledge and thank Karrie Daniels for providing us information and requirements for 
this project, as well as acting as a sample user of our end product. We appreciate the time 
and commitment these two individuals have donated towards this project 

Problem and Project Statement 
Many scientists and researchers dedicate large amounts of time towards organizing, 
maintaining, and visualizing the data they collect. The purpose of this project is to find a 
solution to this problem. The solution should be able to automate the process of 
organizing, maintaining, and visualizing data. It is important that scientists and 
researchers have more time to collect and analyze their data, especially in time-sensitive 
experiments; thus resolving the issue of organizing, maintaining, and visualizing their 
data will be beneficial to scientists and researchers. 
 
Our group proposes creating an application named GraphKey that allows the user to 
import pre-existing data from Excel and visualizes the data. The application will allow 
users to select data elements and a type of graph/statistical analysis and visualize the 
resulting information in the form of a graph or another type of visual. The graphing 
utilities will allow the user to customize the appearance of the graphs and will meet 
scientific publication standards. Additionally, the application will allow the data and 
visuals to be exported and shared with another person. Our hope is to create an 
easy-to-use application that does not require too much maintenance and allows scientists 
and researchers an easier method to organize, maintain, and visualize their data. 
 
On a more personal level, our client has often mentioned that she spends large amounts 
of time going through and formatting data so that her current software can process the 
data without issues. On top of that, she manually creates graphs one at a time to ensure 
no problems arose from the generation of these graphs. Her primary goal is to lessen the 
amount of time it takes her to analyze the data and instead focus that time on research. 

 

 8 



 

End Goal 
Our end goal for this project is to create a free, easy to maintain, and powerful tool that 
allows researchers to import data from sheets such as Excel and create detailed graphs 
with relative ease. This application will be self-contained, and allow for the user to run 
and operate the application with little-to-no knowledge of the underlying code and 
mechanics. 
 
Over the last year, this goal has changed very little, as our client has been adamant about 
the core problems this application solves. On top of that, in order to keep the code 
maintainable, complex additions to the project were limited. This allowed us to focus our 
undivided attention towards implementing the core issues that this application addresses 
with quality. 

Intended Users and Uses 
GraphKey is intended to be used by scientists and researchers for organizing and 
visualizing large amounts of data efficiently and effectively. The visualizations created by 
the product should meet scientific publication standards so that these visualizations can 
be used in published scientific reports and papers. Non-technical users should be able to 
use the end product with ease. This places high importance on the intuition and 
cleanliness of the User Interface of our software. Furthermore, this software will not have 
a maintainer or IT team after it is delivered, so the project will need to be clean and bug 
free to match the lack of maintenance staff. 

Operational Environment 
GraphKey is purely software based. Thus, GraphKey’s environment is simply any 
computer that has Python installed. Our end users will most likely be in a 
climate-controlled, indoor location, which means that GraphKey will be able to run on 
our user’s computers without any problems. 

Assumptions and Limitations 
Assumptions:  

● The maximum number of users per instance of the product will be one  
● The solution will not be distributed outside of Iowa State  
● Python and the Python Interpreter will be the primary development tool used 
● The end user will require an instruction set about the end product  

 9 



 

Limitations:  
● The end product shall be able to be maintained by 1-2 IT workers on a minimal 

time basis 
● The end product shall be free (less than the cost of the client’s current solution, 

adjusted given the final product does not use any proprietary technology)  
● The end product shall be easy to run and navigate with little-to-no programming 

experience 
●  The end product shall be based on, and released for, the ISU research department 

Related Products and Literature 
The previous work we are basing GraphKey off of is the solution our client is currently 
using, GraphPad. This technology is designed specifically to take data and organize it 
similarly to a spreadsheet, and then provide graphing utilities to help visualize the data. 
GraphPad itself does not operate data entry as a spreadsheet, but a more specialized 
version where they offer special data tables that can be catered to how the client wishes 
to organize the data.  
 
One of the current major downsides to this technology is the price. GraphPad can be 
extremely expensive on a yearly subscription, especially when more than one person 
needs to have a license for it[1]. Another downside of GraphPad is the lack of options for a 
robust suite of graphs. Currently, GraphPad can only create bar graphs. While our client 
uses bar graphs, she would also like to be able to work with more varied graphs such as 
scatter plots and box plots. Additionally, GraphPad can only create one graph at time. 
This can be very time consuming for our client who makes several graphs every day. 
 
GraphKey is designed to address all the major issues our client has with GraphPad. 
Mainly, GraphKey will be free to use, will have a more robust suite of graphs, and will 
allow our client the ability to create multiple graphs at once. 
 

  

 10 



 

Project Design 
Our final design for GraphKey is a revised version and implementation of the previous 
project design we proposed in April 2020. The specifics of those design implementations 
have been worked out, and the process we took to get to the final design changed over 
the course of the semester. This section will go over our requirements and design from 
last semester, as well as the new design implementation that GraphKey leverages. 

Requirements 
Our client’s overarching requirement is to be able to use this software to manage data 
from microbiology experiments.  
 
The following is a list of functional requirements given by the client:  

● Ability to import data from Excel  
● Customizable data visualization based on specified data elements  

○ Supporting bar graphs, box plots, and scatter plots 
○ Supporting statistical analysis such as correlation and p-value computation 
○ Multiple graphs can be created at the same time 

● Data sets and graphs should be able to be saved to the file system, as well as 
exported and shared with coworkers 

● Supports the creation of projects 
○ Collation of multiple graphs from similarly based experiments 

 
 Our non-functional requirements include:  

● Ability for the system to be maintained by one or two people  
● Secure enough so that research data can’t be seen by anyone else  
● Utilizes Python libraries for data visualization  
● Data must be parsed after it is imported 
● User Interface should be intuitive and easy-to-use 

 
Engineering Constraints: 

● A desktop application is required as the end product 
○ Must be able to run on Windows, Linux, and Mac OS 
○ Will not require more than 200MB of space 

● Python was the desired development language 
● Plotly is the required Python graphing library 

 11 



 

Old Design Approach 
For each element in the diagram below our application would have an interface that 
abstracts each component and thus, simplifies how the elements interact. The benefits of 
using interfaces include better collaboration. This means that each team member does 
not have to know everything about another component in order to use it, they can just 
use the interface.  
 

Figure 1:  Initial conceptual sketch of the application and interactions between modules 

 
The thought process behind this conceptual sketch was that the GUI would have limited 
access to the backend systems and limited knowledge of how those systems interacted 
with each other. Underneath the User Interface, the backend modules would 
communicate and interact with each other through function calls and inheritance to 
allow for a modular approach to development and interaction. The backend was designed 
to be doing the heavy lifting, supporting all functional requirements from data 
importation and parsing, to containing the data, to visualizing the data and then 
presenting the visualizations to the GUI. The GUI was supposed to be as lightweight as 
possible and only call functions that were absolutely necessary to keep the process 
moving. Otherwise, the backend would control the pipeline. 
 
One of our core values when designing the architecture was to make sure that neither 
backend or frontend would modify or manipulate any of the data stored without making 
an appropriate API call. Doing this would allow us to make absolutely sure that the path 

 12 



 

the data takes from start to finish is well documented and understood from those outside 
of the system. Users of our application should be able to read a user’s guide and 
understand the structure of the system. 
 
To see more design ideas our team had at the very beginning of the project, please see 
Appendix 1. 

New (Final) Design Approach 
While the final design did change “dramatically” between the initial design approach and 
the final design approach, the main core value of manipulating the data through the use 
of API calls to the backend was maintained. Doing so allowed us to swap out GUI 
implementations on the fly with little worry that the backend would respond poorly to 
the new GUI and reject it. 

 
Outside of keeping our modular, interface-style approach to the backend, we did alter our 
design philosophy greatly in regards to the frontend’s role in dealing with data. We 
decided that the frontend would make API calls to the backend to get certain information 
it needed (such as all the data variables in an Excel sheet). Then, the frontend would 
make another call to the backend with new data (such as the variables to be graphed, 
selected by the application user) to get the final product it desired. Doing so shifted the 
burden of the data flow to the frontend, keeping the backend completely segmented with 
no reliance on any other modules within the backend. We thought this would be the best 
approach so that the core building blocks of our product, located in the backend, could 
be completed faster than the frontend, which was going to continue being developed on 
until the end of the project. With this design adjustment, our new conceptual sketch 
looks like the following: 

 
 
 
 
 
 
 
 
 
 
 

 13 



 

Figure 2:  Final conceptual sketch of the application and interactions between modules 

 

  

 14 



 

Frontend (Graphical User Interface) 
Figure 3: Final frontend GUI flow 

 
The GUI has a main window that manages what page is loaded in. This main window also 
manages a unified navigation bar and any communication that occurs between the two 
main pages. When something calls for a page to be loaded in, it sets that view as the 
central widget. 
 

 15 



 

The first page is the project page, which is primarily used for project creation and 
selection. Projects allow the user to have specific projects for different data sets, as well as 
generate graph templates that are unique to a specific project. Doing this allows us to 
keep the user’s data persistent from session to session, and allows the user to save and 
quit and be able to come back later and continue working on the same graphs and files. 
 
The second page is the graph creation page, which has several different elements 
throughout it. On the left, users can select a certain workbook, workbook edition, and 
sheet that they would like to generate graphs from. Below this, there is a graph explorer 
which contains the graphs already generated from the specific sheet selected. From this, 
the user can select a graph to view. At the bottom of this segment of the window, users 
can select the type of graph they wish to generate. The bottom-half of this screen 
contains our mass-graph generation. In this portion of the page, a user can select the data 
they want to be graphed as well as how they would like the data to be grouped. Users can 
select multiple variables at a time to generate multiple graphs at the same time. Finally, 
on the right side of this screen holds a section where the graph’s properties can be edited 
after being generated. This includes the title, axis names, text font and size, dimensions of 
the graph, the min and max values of the x-axis and y-axis, as well as the marker colors 
and symbols. The main window’s navigation bar holds buttons for file importation and 
exportation, default graph preferences, and graph template selection. In the center of the 
screen is where a selected graph generates a preview for the user. 
 
We thought this approach worked the best as it simplified the GUI to two different 
windows, while also keeping all the relevant information present to the user. Instead of 
having the GUI broken up into many smaller and more simplistic windows, we are able to 
have the user control all the tools needed to generate graphs without having to navigate 
through multiple windows and frustrating UI designs.  

Backend 

As a result of the frontend being so involved in how we control the flow of data, the 
backend was kept extremely simple in its structure (aside from one portion which will be 
talked about later in this section). We designed the backend such that it did not care 
which type of UI (if there even was one at that point) was calling the function, so long as 
it made a proper function call. The backend would take the input, process that input into 
an output, and return it back to whoever made that call. This essentially kept not only the 
backend as a whole very self-contained, but also made the modules within the backend 
self-contained as well. Doing this allowed us to make our backend testable, portable, and 
stable as we moved to developing the frontend more. 

 16 



 

 
The only part of the backend that required a good amount of development time and 
thought process was how to process the data into an object the GUI can graph. Because 
each method of graphing (box plot, scatter plot, bar graph) are different in the underlying 
Plotly engine we use, the backend needs to know which one the frontend wanted, while 
also being generic enough such that the frontend would not have to manage independent 
object types within its code. This is why we decided to use the Factory method (pictured 
below) as well as abstract classes. 

 
Figure 4: Figure Factory implementation 

 
 

The GUI calls the FigureFactory.factory() method with a DataFrame object and 
a string (or enum) corresponding to the type of graph it wants generated. The 
FigureFactory then creates the specific Figure object for the desired plot and 
returns it to the frontend. The frontend simply knows that it now has a Figure object 
with two methods it can call (construct_figure() and get_figure()), which are 
utilized to display the graph to the user. 
 
Using this approach allows the frontend to not have to be refactored every time a new 
graph needs to be generated or when the backend needs to fix an issue with a specific 
plot. Instead, there is only one point that needs to be changed when adding or removing 
supported graphs: the FigureFactory class. This design also allows us to avoid the 
frontend having to manage different object types for different graphs as everything can 
just be considered as a Figure object. Finally, by having a dictionary as the set of 
arguments for constructing the figure, we are able to keep templates and configurations 

 17 



 

separate from the instance of the Figure itself. We now can use the exact same 
arguments on multiple graphs without having to require the user to input the arguments 
over and over. The dictionary can be saved as its own object and then loaded in whenever 
the settings it contains are wanted. 
 
Another design challenge was how to manage graphs. Over time, we realized we wanted 
to import revisions to a workbook while still utilizing the same graphs already generated. 
We also foresaw issues with file size, as each graph would save the data it needed into a 
pickle file. Our solution to this was to separate the data used by a graph from a graph’s 
configuration file. This greatly reduces a project’s size, and prevents duplicate data. It also 
allows us to import revisions. Each “edition” of a workbook saves into a project’s 
workbook, and the client can now select which edition they want to use. Using that 
selected edition, it grabs the data from the edition selected, combines it with the graph’s 
configurations, and loads in a graph.  

 18 



 

Implementation Details 
This project was completed entirely using Python and Python libraries. The following is 
summarized list of the Python libraries we used: 

● Plotly 
● Pandas 
● PyQt5 
● PyDrive 
● Unittest 

Plotly 

The first software library we interfaced with is Plotly, a graphing based module. This was 
the engine of our graph generation. We performed rigorous input and data manipulation 
testing with the module to make sure that it can handle the large and complex amounts 
of data that will be inputted to the application at one time. We found that it was able to 
handle the data we were giving it, as well as provide enough options and flexibility to let 
the user define their own constraints and customization on the graph being produced.  

Pandas 

Another software library we interfaced with is pandas, a data analysis and manipulation 
tool for Python. This was our primary module behind data importation and parsing. With 
the use of pandas, we were able to handle wrong files, large files, different types of files, 
while also providing a unified and correct output so as to keep the logic between 
importing data and manipulating/graphing the data as simple as possible. Additionally, 
we were able to use some of the built in functions for pandas to perform statistical 
analysis on our data. 

PyQt5 

We also used PyQt5, a Python binding of the cross-platform GUI toolkit Qt. We utilized 
this toolkit to develop our Graphical User Interface. With this library, we were able to 
create a GUI that was simple and easy to use, while also looking clean and professional. 
We were able to use File Trees, multiple screens, pop-up windows, scrolling windows, 
sectional dividers, and a helpful menu bar (with dropdowns) to streamline the user’s 
experience. 

 

 19 



 

PyDrive 

We also utilized PyDrive, a wrapper library that simplifies many common Google Drive 
API tasks, to export and upload generated graphs to Google Drive. PyDrive made Google 
Drive authentication simple and also allowed us to maintain access to multiple Google 
Drive accounts at the same time. Additionally, with the use of this library, our users can 
not only upload their generated graphs to Google Drive, but also create new folders in 
their Google Drive all the while staying within our application. 

Unittest 

Unittest is Python’s own unit testing library. This library helped us to create and run 
robust unit testing required for each of the modules within our project.  

Implementation Standards 

Throughout our implementation process, we kept the following standards in mind: 

● Simple, modular design: This makes it easier for each team member to interface 
with the code of another team member. 

● Single coding standard (specifically PEP-8, a style guide for Python coding): This 
ensures that we all use the same coding standard and utilize best practices when 
developing our Python code. 

● Frequent refactoring: This forces us to retrospectively review the work we have 
completed and make it better. It also helps us clean up our code and program 
structure, getting rid of anything we no longer use, and cleaning up anything that 
has been made too complex. 

● Heavy documentation in both code and manuals, updated regularly: This will 
make it easier for our intended users to understand and use the application. It will 
also help anyone who decides to continue working off our project in the future. 

Source Code and Documentation 

To see our source code and the corresponding source code documentation, please go to 
our Senior Design Website (https://sddec20-29.sd.ece.iastate.edu/). Here, you will find a 
link to our GitLab Repository, as well as a set of HTML files documenting our source 
code. 

  

 20 

https://sddec20-29.sd.ece.iastate.edu/


 

Testing Process 
Due to GraphKey being designed entirely as a software solution, we were able to benefit 
in our testing as our software would not have to be integrated with hardware, keeping the 
amount of failure points in our product relatively low. By running our software on a 
cross-platform language and interpreter such as Python, we were also able to ensure that 
our solution could work for Mac, Linux, and Windows type machines without any 
concern of outlier behaviors.  
 
Thanks to these constraints and design decisions by the client and the team, we focused 
on two specific forms of testing, unit testing and integration testing. 

Unit Testing 
For unit testing, we used Python’s unittest framework which allowed us to create fast and 
simple tests for the backend. Take the following test as an example: 

 
Figure 5: Example unit test 

 
 

Doing this allowed us to use Python’s built-in support for testing to make sure that our 
backend was stable enough for the frontend’s tasks. On top of these specific automated 
unit tests, we also hand tested modules within the backend, particularly in the case where 
they required hooking into different services (like uploading images to Google Drive). 

 21 



 

Along with these unit tests, early in the development process we had our GitLab 
repository set up for CI/CD (Continuous Integration and Continuous Deployment). On 
each branch of development, whenever a developer pushed, the GitLab repository would 
run the unit tests within the test folder and notify the owner of the branch if the branch 
failed testing. We also prohibited failing branches to be merged into master. Doing so 
allowed us to make sure that master was as stable as possible and any changes to master 
would not affect the stability of that branch. Unfortunately, as the frontend was getting 
more developed and new PyQt pages were introduced into the project, the pipelines 
would begin to fail because of certain dynamically created files that PyQt required. Due to 
this, we decided to disable CI/CD and trust developers to run the unit tests on their 
machines (which still worked) to make sure they passed before merging into master. 
 
Our main challenge in the testing process was being diligent in writing tests for our code. 
Due to the shorter semester and lack of unit testing training and experience, developers 
on the team tended to test things by hand instead of creating detailed unit tests. 
Continuous testing became harder and harder to do as technical debt built up, and if we 
had more time, we would have liked to flesh out our unit testing more. 

Integration Testing 
We mostly completed integration testing by hand and within the meetings with our 
client. This type of testing was primarily focused on how the frontend operated and how 
the GUI looked and performed. This was done primarily by hand and eye due to the 
team’s lack of experience with automated GUI testing and development. We would also 
consult the client on the layout and format of the GUI so that we could develop an 
easy-to-use application that supported all the features that the client desired.  

 22 



 

Results 
After a year of design and development, we have produced an application called 
GraphKey that can import scientific data from Excel sheets into custom projects (that can 
be saved and loaded between sessions) and generate multiple customizable graphs at the 
same time. All of this is done in a program that can be run on any machine so long as 
Python is installed. Thus we have developed an application that can be used for scientific 
research papers. The first screen (for creating and selecting projects) is featured in the 
figure below: 

Figure 6: GraphKey Projects Screen 

 
 
  

 23 



 

The second primary screen of our application (for generating and customizing the 
graphs) is featured in the figure below: 

Figure 7: GraphKey Graphing Screen 

Along with the delivery of our product, we have strived to maintain simplicity and 
modularity in the application in order for easy expansion and maintenance after the 
development team is finished. We have also delivered a user guide (see the Appendix) 
and documentation (see our Senior Design Website) for those who would like to work on 
the project after we are done. 
 
For a short demo video of our application, please go to our Senior Design Website 
(https://sddec20-29.sd.ece.iastate.edu/).   

 24 

https://sddec20-29.sd.ece.iastate.edu/


 

Conclusion 
Throughout the year, our team has been continuously creating, implementing, and 
improving our GraphKey design to meet the requirements of our client. Our end goal was 
to produce an application that allows the user to import pre-existing data from Excel and 
to manage and visualize the data. We also wanted the user to be able to customize the 
data variables used to make-up the graphs, as well as the appearance of the graphs. 
Additionally, we also wanted the user to be able to export and share generated graphs 
with another person.  
 
We believe the product we have come up with meets all of the goals we set out for 
ourselves. In addition, the product is an easy-to-use application that does not require 
much maintenance, and allows our target client demographic, scientists and researchers, 
an easier method to organize, maintain, and visualize their data. We have tested and 
experimented with the base components of the application to guarantee our design works 
and meets our client’s needs. We believe that we have completed an application that 
confirms the exceptionality of our design choice and solves our client’s problem. 
  

 25 



 

Appendices 

Appendix 1 - Previous/Alternate Design Versions 
Throughout the design process, we had several different versions of the project that 
would have either been alternative solutions or additions to the current solution that 
would have dramatically changed how the application was run and developed. The 
common reason as to why these designs were scrapped were due to a combination of 
being less efficient, more difficult to maintain after completion, and time consuming for 
development. 

Alternate Design 1: Machine Learning Integration 
At the very beginning of last semester, we had a stretch goal to implement TensorFlow 
machine learning into the application as a sort of assistant to the user. It would comb 
through the important data and point out any irregularities within the data that may have 
come from entering the data wrong (such as adding an extra zero) as well as giving 
suggestions as to which data would be graphed and how. Doing so would ease up the 
burden of graph creation on the user immensely and would increase the speed of graph 
generation. As can be expected, this was scrapped pretty quickly into development as the 
time it would take to integrate the machine learning algorithm into the application, let 
alone training it to spot erroneous data and provide graphing suggestions, was way out of 
the scope of this project. Not only would have it been difficult to implement correctly 
within the app, but it being in the application creates a massive headache for maintainers 
after the team’s departure. In order to keep the application small and manageable, this 
design was left on the drawing board. 

Alternate Design 2: Web Application + Database 
When coming up with different designs for the application, another solution was to have 
a web application and database create the graph. Advantages for this would be the 
removal of a local app on the user’s machine and ease of access for anyone who would 
want to use it. Another bonus is that members of the team had more knowledge in web 
development and database management (to a degree) over Python, which would keep the 
cost of learning a new language down. This idea was also moved on as the question of 
maintainability and costs arose. In order to keep costs essentially free and make it so only 
one person would need to make small changes in their free time, having a complex web 
application and database relationship would have been too much for that person to 
devote resources into maintenance. 

 26 



 

Alternate Design 3: Raspberry Pi 
The last application design that was considered before moving to our final design was to 
have the entire thing contained on a Raspberry Pi. The thought process here was to have 
it plugged into the computer of the user and run and store data within the pi and give the 
user their graphs if they so desired. This was designed as more of a middle ground 
between our final design and the web application, as it could have easily been converted 
to a small server that the user could start up and connect to for processing data and 
creating graphs. 
 
The reason why we moved away from this design was because of wanting to keep the 
application simple and easy to maintain, as well as for computational reasons. The first 
reason was fairly simple, keeping the application on the users and developers machines 
would make for easier and more rapid deployment of changes and updates rather than 
pulling in the Pi and making changes locally on that machine. While the difficulty of 
maintenance is not that bad when it comes to modifying an application on top of a Pi, it 
is only exacerbated by the second reason. 
 
Lack of a powerful processor on the Pi is the primary setback to this solution. Because 
pulling in, processing, and graphing large amounts of data is CPU intensive, having a 
small amount of processing power that the Pi has can make the experience of graphing 
with the application miserable for the user. With long load and render times, we did not 
want the client to feel as if they were just waiting for something that would be much 
faster to do manually. While the power of the new Raspberry Pi 4 has increased, it is still 
much less powerful than modern computers that can run our application faster. 

Appendix 2 - Other Considerations 
Throughout our project our team suffered a lack of cohesion and a large architecture 
shift, mostly a result of lack of experience in development as well as having to work 
entirely remotely due to the ongoing global pandemic. While some of us have had some 
work experience through internships and co-ops, we as a team just did not have enough 
experience as a whole to prevent these problems from arising throughout our 
development. 

Independent Projects (Lack of cohesion) 
At the beginning of our project, we made a huge push to be diligent in our git practices. 
This meant having independent branches for each feature, and only merge into master 
once the feature was done and reviewed by peers. We kept this value core throughout 

 27 



 

development and it helped a lot when it came to keeping master the most stable branch. 
Unfortunately the side-effect of that was in the beginning when we did not have a solid 
foundation and backend to build the GUI. This resulted in each person having a different 
frontend design that would work with their code. When they merged into master, master 
became a collection of different individual projects that each worked for only one feature. 
It essentially became a bunch of “hello world” mini-projects rather than one application. 
This was further exacerbated by the global pandemic, which forced us to work remotely, 
severely reducing our abilities to collaborate. 
 
This issue forced us to spend a week or two of development time to sit down and collect 
all these independent features under one GUI. All branches were forced into master and 
then collected into one comprehensive frontend and one comprehensive backend. After 
this was done, development and integration into the project was much easier, as we had a 
foundation to expand upon and work with on each branch, while still keeping master as 
the stable branch. Unfortunately, had we done this much earlier than we did (or had this 
plan from the start), the entire rebase and refactor could have been mitigated or 
completely avoided, speeding up development time. 

Architecture Shift (Subsequent Refactor) 
The second problem we had was intrinsically linked to the first problem above as well as 
the outlined design change between the initial design approach and the final design 
approach. We made this major shift in design later in development in order to support 
the inevitable problem that was the independent projects, but we had originally designed 
the backend as the one that was the side manipulating the data. In order to fix these 
issues, we had to spend time evaluating the design philosophy of the backend and its role 
within the application. Finally we came to our final design approach and implemented it 
into GraphKey while the frontend was coming together. We believe that the design 
choice of our final project is a good solution. We only regret that we made the shift so late 
in the developing process. 
 

  

 28 



 

References 
[1]“How to Buy Prism,” GraphPad. [Online]. Available: 
https://www.graphpad.com/how-to-buy/. [Accessed: 26-Apr-2020]. 
 

  

 29 



 

User Guide 
(Please Use the Table of Contents on Page 4) 

 

GraphKey User Guide 
 

 
A Microbiology Lab Information Management and 

Visualization System 
 

 

 
Senior Design Project 

2020 

 

Team 29: Brittany McPeek, Benjamin Vogel, Rob Reinhard, Kyle Gansen, Ben 
Alexander, and Samuel Jungman 

 

Team Website: https://sddec20-29.sd.ece.iastate.edu 

  

 30 

https://sddec20-29.sd.ece.iastate.edu/


 

1. Overview 

The purpose of this User Guide is to provide a user of GraphKey all the details 
needed to use the GraphKey application. This Guide will walk the user through 
generating Projects within the application, importing data, generating various 
types of graphs, creating graph templates, and exporting graphs. All available 
options within the application will be explained.  

2. Getting Started 

This product is a software application that allows the user to import pre-existing 
data from Excel and manage and visualize the data. The application supports the 
importation of data in CSV and JSON format. Users can select the type of graph 
they would like to generate along with the data they would like to be graphed. 
Three graph types are supported: scatter plots, bar graphs, and box plots. Multiple 
graphs can be generated at once if the users selects more than one data grouping 
for each graph variable at a time. Specifically, the application will generate all 
permutations of the selected data grouping. Depending on the graph type, the user 
can also select to use colors and symbol markers to visually group the data on the 
graph. The user can also customize various graph settings, including but not 
limited to, the dimensions of the graph, the axis labels, and the title of the graph. 
Lastly, the application allows the user to export the generated graphs to a specified 
location on the local machine as well as their Google Drive account. 

2.1. Obtaining the Application 

A copy of the application can be found on the Senior Design website for 
Team 29.1 On the Home Page, download GraphKey.zip.  

2.2. Running the Application 

2.2.1. Requirements 

● Python (at least version 3.7)2 
● GraphKey.zip (see Section 2.1) 

2.2.2. Installing Requirements 

To install Python, please see Python’s Website2. 

 31 



 

To install GraphKey, please follow the instructions below: 

1. Unpack the GraphKey.zip file into a desired directory 
2. Verify that the requirements.txt file is within that directory 
3. Start up a command prompt and navigate to the directory 

where GraphKey.zip was unpacked 
4. Type python -m pip install -r requirements.txt 

either in a Virtual Environment or your native Python 
installation 

2.2.3. Starting the Application 

There are two ways to start the application. 

1. Find GraphKey.py in your file system and double click on it. 
2. On a command line interface, type python GraphKey.py. 

Please note that it can take up to 30 seconds for the application to 
launch, especially on the first time launching the application. Once 
the application has launched, you should see this window (recent 
projects may be blank if this is the first time launching the 
application): 

 32 



 

3. Projects 

Projects serve as an easy way to keep imported data and generated graphs 
organized. It is recommended to keep the data and graphs of one experiment 
separated from another experiment through the use of Projects. 

3.1. Creating a New Project 

The Home Screen of the application looks like the following: 

To create a new project using this window, click on the New Project button 
in the right column of the window. A New Project Pop-Up window will be 
displayed. 

Enter in a name for the new project and click OK. The New Project 
Pop-Up will close, and the project will show up under Recent Projects on 
the Home Screen. 

 33 



 

3.2. Opening a Project 

The Home Screen of the application looks like the following: 

To open a project using this window, either double-click on the project to 
be opened in the Recent Projects window, or single-click on the project to 
be opened in the Recent Projects window and then click on the Open 
Project button in the right column of the window. The screen will change 
into the Graphing Screen. 

4. Importing Data 

Data can only be imported while on the Graphing Screen. There are two types of 
data that can be imported: a new data set and a revised version of an older data set 
(i.e. a data set that has been imported before). Allowing the importation of a 
revised version of a data set allows a user to keep old versions of the data within 
the application as well as older versions of graphs. This allows for easy data and 
graph comparison between data versions. 

4.1. Importing New Data  

Click on the File Dropdown Menu in the upper left of the window. 

 34 



 

From the dropdown menu, click on Import File. A file system browser will 
pop-up. Browse to the file to be imported. Select the file and click Open. If 
the file is large, a pop-up window explaining to please wait may appear. 
Once the file is done importing, it will become available to be selected in 
the Select Workbook Dropdown Menu. 

4.2. Importing Revised Data  

Click on the File Dropdown Menu in the upper left of the window. 

 35 



 

From the dropdown menu, click on Import Revision. The Add Workbook 
Edition Pop-Up will appear. 

 

Select the Workbook that has a revised version of its data. Then select the 
Import Workbook Revision button. A file system browser will pop-up. 
Browse to the file to be imported. Select the file and click Open. The Add 
Workbook Edition Pop-Up will now display the select file. 

 

Select the Import button to begin importation. If the file is large, a pop-up 
window explaining to please wait may appear. Once the file is done 
importing, it will become available to be selected in the Select Edition 
Dropdown Menu. 

 36 



 

5. Selecting Workbook, Edition, and Sheet 

On the Graphing Screen for a project, the selected workbook, workbook edition, 
and Excel sheet can all be changed in the upper left hand corner of the screen. 

The workbook can be selected from the first dropdown menu. To import another 
workbook, see Section 4.  

The workbook edition can be selected from the next dropdown menu. This reflects 
any revisions that may have been imported for the selected workbook. So, if the 
current workbook has no other versions, there will only be “1” to choose from in 
this dropdown.  

The next dropdown is for selecting a specific Excel sheet in the specified 
workbook. The dropdown options will simply include the names given to the 
sheets in the specified workbook. 

6. Generating Graphs 

Before generating the graphs, please ensure that the correct Graph Preferences 
are selected. Please see Section 11 for details on Graph Preferences.  

Additionally, select the Workbook, Workbook Edition, and Excel Sheet where 
the data to be graphed is located. Please see Section 5 for details.  

 37 



 

Then, select the desired Graph Type. Scatter Plots, Bar Graphs, and Box Plots can 
all be generated. See Sections 8 and 9 for details on these graph types and how to 
select data for the given type. 

After the data and Graph Preferences have been selected, click on the Generate 
Graphs button located midway down the screen on the left side. 

 38 



 

If the graph generation is expected to take a long time, a pop-up window 
explaining to please wait may appear. Once graph generation is complete, the 
graphs will appear under the Sheet Graphs window section on the left side of the 
Graphing Screen. 

7. Viewing Graphs 

Graphs available for viewing will be located in the Sheet Graphs window section 
on the left side of the Graphing Screen. To view a graph, simply click on the 
name in this window section. The graph will then appear in the center of the 
Graphing Screen. Note that large graphs may take a while to appear. 

 

Please note that only the graphs for the currently selected sheet are available for 
viewing. To view a graph from another sheet, workbook, or edition, change the 
corresponding selections. See Section 5 for more information. 

8. Scatter Plots 

8.1. Selecting Data 

Data groupings can be selected on the bottom-half of the Graphing 
Screen.  

 39 



 

 

For Scatter Plots, the user will be required to select at least one X-Variable 
and at least one Y-Variable. For multiple graphs to be generated, select 
more than one X-Variable and/or Y-Variable. 

Optionally, the user can select Color Grouping Variables and Marker 
Grouping Variables. This will group the scatter points by color and 
symbol markers respectively, based on the groupings selected. To generate 
multiple graphs with different groupings of the scatter points, select more 
than one Color Grouping Variables and/or Marker Grouping Variables. 

8.2. Example Scatter Plot 

 40 



 

9. Bar Graphs and Box Plots 

9.1. Selecting Data 

Data groupings can be selected on the bottom-half of the Graphing 
Screen.  

 

For Box Plots and Bar Graphs, the user will be required to select at least one 
Grouping and at least one Y-Variable. For multiple graphs to be 
generated, select more than one Grouping and/or Y-Variable. 

Optionally, the user can filter the groups shown, as well as select 
Sub-Groupings (for Bar Graphs) and Color Grouping Variables (for Box 
Plots). This will group the bars and boxes by color based on the groupings 
selected. To generate multiple graphs with different groupings of the bars 
and boxes, select more than one Color Grouping Variables or 
Sub-Groupings. 

 

 

 

 

 

 

 41 



 

9.2. Example Bar Graph 

 

9.3. Example Box Plot 

 42 



 

10. Editing Graphs 

Graphs can be edited after they have been generated. To edit a graph, first select it 
from the Sheet Graphs window. Then, the upper right window of the Graphing 
Screen will contain information above the settings of the graph. 

 

From this window, the graph title, size, x and y-axis labels, x and y-axis scales, 
marker color, and marker symbol can be changed. Additionally, the x and y-axis 
ranges can be manually adjusted, and a trendline can be selected to appear on the 
graph. After making the necessary adjustments, click Save Changes. 

11. Graph Preferences 

To view and/or change the Graph Preferences, click on the File Dropdown 
Menu in the upper left of the window. 

 

 

 

 

 43 



 

From the dropdown menu, click on Graph Preferences. The Graph Settings 
Pop-Up will appear.  

 44 



 

On this settings window, there are multiple preferences to view/change: Color 
Theme, Symbol Theme, and Other. To switch between them, click on the 
corresponding tab.  

The Color Scheme represents the colors used in the graphs generated. The tab to 
change this preference looks like the above picture. If a Color Grouping Variable 
was selected, the graph will rotate through the selected Color Scheme. If the 
Color Grouping Variable has more categories than the number of colors in the 
selected Color Scheme, the graph will rotate through all the colors in the selected 
Color Scheme and then start again with the first color in the scheme. Users can 
select, create, and delete themes on this tab. 

The Symbol Scheme represents the marker symbols used in the graphs generated. 
The tab to change this preference looks like this: 

 

If a Symbol Grouping Variable was selected, the graph will rotate through the 
selected Symbol Scheme. If the Symbol Grouping Variable has more categories 
than the number of symbols in the selected Symbol Scheme, the graph will rotate 
through all the symbols in the selected Symbol Scheme and then start again with 
the first symbol in the scheme. Users can select, create, and delete themes on this 

 45 



 

tab. 
 
The Other tab has additional graph settings, including: the dimensions of the 
generated graph image, logarithmic capabilities for x and y-axis, error bar 
capabilities, as well as font Size and Type for the graph title and x and y-axis labels. 

 

12. Graph Templates 

A graph template is used to save the configuration of a graph so that the same 
configuration can be applied to other graphs later on. 

To create a template of a graph, click on a graph file in the Sheet Graphs section 
that was previously generated. When the graph appears, on the Project 
Dropdown select Create Template. An alert will appear prompting for a name 
for the template. Enter a name for the template and select OK. 

 

 

 46 



 

To apply the template to one or multiple graphs, on the Project Dropdown select 
Apply Template. 

 47 



 

A new window will appear. Select a template from the panel on the left of this 
window and select the graphs the template will apply to. After Apply Template is 
clicked, the height, width, color theme, shape theme, and the logarithmic scale 
states of each axis are copied to the graphs that have been selected. 

To view the contents of a template and delete templates, click on the View 
Templates button on the Home Screen.  

After selecting a template, the contents of it will appear on the right side of the 
window. The template can also be removed by selecting Remove Template. 

13. Exporting Graphs 

Please note that Exporting will only work if graphs have been generated and the 
Sheet Graphs window is populated. 

13.1. Exporting to the Local Machine 

First, click on the File tab, and select Export File(s). 

 

 

 

 48 



 

A small pop-up window will appear. 

 

Choose Export to Local Machine. 

 

 49 



 

A window populated with the generated graphs will appear and look similar 
to the above screenshot. Select the files that are to be exported and click 
Export Files. A file system browser will appear. Navigate to the location the 
files are to be saved, and click OK. 

13.2. Exporting to Google Drive 

First, click on the File tab, and select Export File(s). 

A small pop-up window will appear. 

 

Choose Export to Google Drive. The following window will appear. 

 

 50 



 

For new users, None will be the current account selected. If that is the case, 
Switch Account can be used to add a new Google Drive account. The 
following window will appear when Switch Account is clicked. 

 

From this window, new Google Drive accounts can be added by clicking on 
the Add Account button. After clicking on the Add Account button, go 
through the Google Drive authentication flow (a browser window will 
appear). Allow Quickstart to have access. There is a 30-second timeout in 
place, waiting for a successful authentication response. If no response is 
given within 30 seconds, the process will be cancelled. If an authentication 
error occurred, please try restarting the GraphKey application.  

Additionally, Google Drive accounts can be deleted by clicking on the 
Delete Account button. 

Once at least one Google Drive account is hooked up to GraphKey, use the 
Select Account button to select it. Then, click Apply Changes. The new 
Google Drive account should be selected in the following window: 

 

To export files, click on Select Files to Export. 

 51 



 

 

A window populated with the generated graphs will appear and look similar 
to the above screenshot. Select the files that are to be exported and click 
Export Files. The application will now retrieve the file structure of the 
selected Google Drive account. Depending on how much content is on the 
Google Drive Account, this may take a while. Eventually, the following 
window will appear (with the contents of the selected Google Drive of 
course). 

 52 



 

Navigate to the folder the graphs are to be saved to, and click Save File(s). 

From the window above, new folders in the Google Drive account can also 
be created. Navigate to where the new folder should be created, and click 
Create New Folder. Enter in a name at the prompt window and press OK. 
The application will then take some more time to create the new folder and 
re-retrieve the contents of the selected Google Drive account. 

Tip: Hold the CTRL button down on the keyboard and click on a selection 
to unselect it. 

14. Appendix 

14.1. Reference Links 

● 1Team 29 Senior Design Website: 
https://sddec20-29.sd.ece.iastate.edu/ 
 
Contains information about our project including presentations, 
reports, and further links to source code and code documentation. 
Also contains an executable of the GraphKey application that can be 
downloaded and run. 
 

● 2Python Downloads: https://www.python.org/downloads/ 
 
The Python website where Python can be downloaded and installed. 
Python is required for our application to run. 

14.2. About Us 

We are the 29th Senior Design team of the graduating class of Fall 2020. 
Our group is made up of Software Engineering students as well as one 
Computer Engineering student. Please go to 
https://sddec20-29.sd.ece.iastate.edu/team.html for more information. 
 
To contact us, please email us at sddec20-29@iastate.edu. 

  

 53 

https://sddec20-29.sd.ece.iastate.edu/
https://www.python.org/downloads/
https://sddec20-29.sd.ece.iastate.edu/team.html


 

Copy of Design Document from Last Semester 
(Please Use the Table of Contents on Page 6)  

 54 



 

 

Development Standards & Practices Used 

● Detailed Use Case diagrams and User Stories 

● Simple Design 

● Pair Programming 

● Heavy documentation in both code and manuals, updated regularly 

● Single coding standard (Will use PEP-8) 

● Frequent refactoring 

● Simple APIs 

● Don’t write code you might need in the future, but don’t need yet 

● Construct and maintain a user manual for non-technical clients 

 

Summary of Requirements 

● System should support importation of large amounts of data in a reasonable 
amount of time from sources such as CSV and Excel 

● System should be able to abstract the data and place them into modifiable graphs 

● System should support exporting those graphs to be published into research 
papers 

● System should be able to maintain past data and support modifications and the 
addition of new data 

● System will be written in Python 

● System should be easy to understand and use by users with little-to-no 
background in programming 

● System should be maintainable by 1 to 2 IT personnel 

 

Applicable Courses from Iowa State University Curriculum  

● COMS 309 

 55 



 

● COMS 227 

● COMS 228 

● COMS 363 

 

New Skills/Knowledge acquired that was not taught in courses 

● Graphing and graph visualization 

● Python 

● Data management/backup  

 56 



 

1 Introduction 

1.1 ACKNOWLEDGEMENT 

Our group would like to acknowledge and thank Thomas Daniels for his guidance, support, and technical 
advice throughout this project. Our group would also like to acknowledge and thank Karrie Daniels for 
providing us information and requirements for this project, as well as acting as a sample user of our end 
product. We appreciate the time and commitment these two individuals have donated towards this project. 

 

1.2 PROBLEM AND PROJECT STATEMENT 

Many scientists and researchers dedicate large amounts of time towards organizing, maintaining, and 
visualizing the data they collect. The purpose of this project is to find a solution to this problem. The 
solution should be able to automate the process of organizing, maintaining, and visualizing data. It is 
important that scientists and researchers have more time to collect and analyze their data, especially in 
time-sensitive experiments; thus resolving the issue of organizing, maintaining, and visualizing their data 
will be beneficial to scientists and researchers. 

Our group proposes creating an application that allows the user to import pre-existing data from Excel and 
manages and visualizes the data. The application will allow users to select data elements and a type of 
graph/statistical analysis and visualize the resulting information in the form of a graph or another type of 
visual. The graphing utilities will allow the user to customize the appearance of the graphs to be created 
and will meet scientific publication standards. Additionally, the application will save backups of the data 
and allow the data and visuals to be exported and shared with another person. Our hope is to create an 
easy-to-use application that does not require too much maintenance and allows scientists and researchers 
an easier method to organize, maintain, and visualize their data. 

 

1.3 OPERATIONAL ENVIRONMENT 

Our end product will be only software based. The software’s environment is any computer that it runs on. 
Our end users will most likely be in a climate-controlled, indoor location which means that a computer will 
be able to operate without any problems. 

 

1.4 REQUIREMENTS 

Our client wants to be able to use this software to log and manage data about microbiology experiments. 
The following is a list of functional requirements that the client wants: 

● Data import from Excel 

● Data modification after import 

● Custom data visualization based on specified data elements 

● Data sets and graphs should be saved to the file system 

● Data should be backed-up in a separate location 

● Function to export the data and be shared with someone else 

 57 



 

● Creation of projects that contain multiple experiments 

○ Collation of multiple graphs from similarly based experiments 

Our non-functional requirements are: 

● Possible for the system to be maintained by one or two people 

● Secure enough so that research data can’t be seen by anyone else 

● Use libraries in Python for data visualization 

● Data must be parsed after it is imported 

 

1.5 INTENDED USERS AND USES 

This project’s end product is intended to be used by scientists and researchers for inputting, organizing, and 
visualizing large amounts of data efficiently and effectively. The visualizations created by the product 
should meet scientific publication standards so that these visualizations can be used in published reports, 
papers, etc. Non-technical persons should be able to utilize the end product with ease. Many of these users 
are not particularly ‘tech-savvy’ and are not accustomed to complicated and unintuitive software. This 
experience places high importance in the intuition and cleanliness of the UI of our software. Furthermore, 
this software will not have a real maintainer or IT team after it is delivered, so the project will need to be 
clean and bug free to match the lack of maintenance staff. 

 

1.6 ASSUMPTIONS AND LIMITATIONS 

Assumptions: 

● The maximum number of users per instance of the product will be one 

○ The client prefers the data to be modifiable by one person, with additions of simultaneous 
editors as a stretch goal. Given the size and complexity of the data, having simultaneous 
users modifying and graphing data from one set could prove to be a daunting task. 

● The solution will not be distributed outside of Iowa State 

○ Due to the specific solution the end product brings to the research department, the use of 
the product (at least in its early stages of development) will not be useful outside of the 
university. 

● Python and the Python Interpreter will be used for the development 

○ By the request of the client, using Python with  the product should provide easy 
maintenance if needed by people who may be unfamiliar with the development of the 
product itself. This added with powerful graphing utilities can provide a solid solution to 
the client’s problem 

● The end user will require an instruction set about the end product 

○ Due to the technical knowledge of the end users, a simplified instruction manual will be 
required to help convey the usages and information needed to operate the solution. 

 58 



 

Limitations: 

● The end product shall be able to be maintained by 1-2 IT workers on a minimal basis (Client 
Requirement) 

● The end product shall cost the end user no more than $200 (less than cost of current client’s 
solution) 

● The end product shall be easy to run and navigate with little-to-no programming experience (Client 
Requirement) 

● The end product shall be based on, and released for, the ISU research department (Geographical 
Constraint) 

 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 

The final product will parse excel files and output graphs based on the data provided. The end-user will also 
be able to customize these graph layouts as well as select the variables in the graphs so the project’s use 
extends outside of the provided data-set. Finally, the end product’s components will be decoupled to allow 
further customization if the needs of the end-product evolve following delivery (i.e. new types of data or 
graphs are needed).  

The design of the project will be completed by the end of April, and the end product and documentation 
will be finalized by the end of December 2020.  Documentation code will be ongoing as we meet each date. 
A look below shows a list of our deliverables over the course of the next two semesters.  

Table 1: Projected deadlines for the project 

 59 

ID Date Deliverable 

D1 April 30th Framework for each component of our project will have been created.  

D2 September 30th Prototype of each component of our project.  

D3 October 15th Functional Product 

D4 November 15th Final Product 

D5 November 30th Testing 

D6 Ongoing Documentation for above deliverables 



 

 

Table 2: A description of the deliverables for the project 

 

  

 60 

ID Description 

D1 By this point, “Hello World” programs will be built on the technological stack we have chosen. In 
addition, the preliminary frameworks for importation, graphing, exportation, and the GUI 
binding them together will have been created.  

D2 Essential features of each component will have been implemented. Data can be imported from an 
Excel file. Then, you will be able to select data to create at least one type of graph. The graph will 
generate, and then you will be able to adjust the graph if needed. Finally, you will be able to 
export a high-quality image of the graph. In addition, data will be saved.  

D3 Each of the core features will be fully implemented. Every type of graph requested will be 
available for creation, and the importation and exportation settings will be available. More types 
of files will be available for importation and exportation. In addition, backup snapshots will be 
implemented in case data is lost. Finally, the product will be able to calculate correlation and 
perform T-Tests and P-Tests from the graphs. 

D4 Modifications requested by our clients looking at the functional product will be taken into 
account, and stretch-goals, if possible, will be implemented. Bugs that occur in normal 
boundaries will be squashed.  

D5 While testing will occur as we develop the product to ensure proper functionality in normal 
circumstances, these two weeks the testing will be done in attempts to “break the product.” This 
way, our final product we created for the client will continue to properly function even in 
scenarios we didn’t account for.  

D6 Two types of documentation will be provided: one for the end-user, and one documenting the 
code behind our end-product. The end-user documentation will consist of tutorials for the 
end-product. The code documentation will provide a detailed look at all classes and functions 
making up the back-end. The documentation will also outline how these classes and functions 
relate to each other. This will be demonstrated by providing “under-the-hood” looks at the 
tutorials in the end-user documentation. Finally, the documentation will show how classes and 
functions can be extended.  



 

2. Specifications and Analysis 

2.1 PROPOSED APPROACH 

Our proposed approach is to create a local application using Python. The PEP-8 style guide for Python Code 
will be used during development. The user will interact with the program through a GUI made using the 
PyQt5 Python library. The various functions of the application will then be split into components which 
interact with each other through interfaces. This should allow for independent development of the various 
components of the software. A figure showing how these components relate to each other is available in 
section 2.4. 

The design addresses the functional and non-functional requirements from section 1.4 in the following 
ways: 

Functional Requirements: 

● Data import and parsing from Excel will be handled through a data import component of the 
software. Python has a module “pandas” which can be used to extract data from Excel spreadsheets. 

● Data modification after import will be handled through a data holding component of the software. 
Python also has a module “xlutils” which can be used to modify an existing Excel sheet. 

● Custom data visualization of the data will be handled through data visualization and graphing 
components of the software. The open source Python library “Plotly” is one potential library to use 
for these components. 

● The graphs and data will be saved through a save files component of the software. Plotly allows 
static images of plots to be saved, and the data can be saved to new Excel files using the “xlwt” 
Python module. 

● Data will be backed up to a separate location through a data backup component of the software. 
After data has been imported into the software, it can be written to a file in a separate location. 

● A share files component of the software will allow for files created by the application to be 
uploaded to Google drive.  

Non-Functional Requirements: 

● To ensure the system could be maintained by one or two people, a local application approach was 
chosen. Excluding a database from the design of the software eliminates the need for database 
maintenance. 

● The research data will be secure due to the software being a local application.  

● It was requested that Python libraries be used to visualize the data, and the Python library “Plotly” 
is robust enough to cover the functional requirements. 

● The various Excel modules mentioned in the functional requirements allow for parsing the data 
after it has been imported. 

 

 61 



 

2.2 DESIGN ANALYSIS 

One of the strengths of the design in theory is the modularity. Breaking the software into separate 
components should allow for team members to work fairly independently of each other on the software. 
Another strength of the design is that it allows for new functionality to be added to the software without 
having to overhaul the design. New functions can be implemented as new components in the software. 

One potential weakness is that all processing of the data will be done locally. The speed at which this occurs 
will depend on the processing power of the computer running the application, whereas a client-server 
application could allow for processing of data on the server side. 

 

2.3 DEVELOPMENT PROCESS 

The development process will be an agile based development. We will use 1-2 week iterations to produce 
predefined goals. These goals will be written out in the form of story cards that will encapsulate use cases 
with diagrams to allow for easy to follow documentation and maintenance after the project is delivered. We 
will use a Kanban board of some kind to track the progress of story cards. The reasoning behind this 
process is that it will allow us constant feedback from our client as to the specifications and 
implementations of the project. This is a project that will require input as the design and intuition of the UI 
has high importance in the overall quality of the final deliverable. 

 

2.4 CONCEPTUAL SKETCH 

For each element in the diagram we would have an interface that abstracts each component and thus, 
simplify how the elements interact. The benefits from using interfaces here is better collaboration. Each 
team member doesn’t have to know everything about another component in order to use it, they can just 
use the interface. 

Figure 1: Conceptual sketch of the application and interactions between modules 

 

Figure 2: Conceptual sketch of the user interaction of the UI 

 62 



 

 

 

 

  

 63 



 

3. Statement of Work 

3.1 PREVIOUS WORK AND LITERATURE 

The previous work we are basing ourselves off of is the solution our client is currently using, GraphPad. This 
technology is designed specifically to take data and organize it similarly to a spreadsheet and then provide 
graphing utilities to help visualize the data. GraphPad itself does not operate data entry as a spreadsheet, 
but a more specialized version where they offer special data tables that can be catered to how the client 
wishes to organize. 

One of the current major downsides to this technology is the price. GraphPad can be extremely expensive 
on a yearly subscription, especially when more than one person needs to have a license for it [1]. The other 
downside that the client has told us is the lack of options for a robust suite of graphs. Currently, GraphPad 
only can visualize with bar graphs, which the client may use, but would rather work with more varied 
graphs such as scatter dot plot graphs and correlation graphs. 

 

3.2 TECHNOLOGY CONSIDERATIONS 

The possible solution we are bringing to the table would provide a free variant to GraphPad. It would 
handle data in a similar way since that was valued by the client, but also utilize the power of Plotly (a 
Python library specialized with advanced graphing utilities) to provide a wider variety of graphs to use. 

One strength of this solution would be the ability to use a free, open-source library on top of a free, 
open-source language and interpreter, which will be able to drive costs down on the development, which 
can transfer over to the user. Python has a massive amount of packages that can be easily installed and 
incorporated into our project to help us not only provide a robust product for the client, but relieve a lot of 
the behind the scenes work for the developers (for example, importing and parsing large amounts of data). 
Another strength of this solution is due to the nature of Python and our structure, we will be able to make 
an end product that should be much easier to maintain and fix for people who are not as experienced in 
software development. By making the front end and the back end as accessible as possible for our end 
clients, we can ensure that the product will be able to live beyond the Senior Design class. 

A downside to this possible solution is the nature of Python itself. Because Python runs on an interpreter, 
creating an EXE or application will be harder. There are packages and libraries to help with the process, but 
it just doesn’t work as naturally as some other languages or solutions might. Another downside is the 
current solution is a local solution. The client, while making it a low-priority stretch goal, wanted to have 
simultaneous users. By keeping, modifying, and visualizing the data on a local machine, it will make a 
solution with simultaneous users difficult if not impossible. 

 

3.3 TASK DECOMPOSITION 

Our tasks can be decomposed into the modules similar to the structure of our solution in Figure 1: 

1. Graphical User Interface 

a. Styling 

i. Create a visually appealing front end that also shows all relevant data 

ii. User should be able to edit styles to their own liking 

 64 



 

b. Layout 

i. Layout should be easily understandable by the end user 

ii. Graphing should be the primary focus of the layout 

2. Data Import and Parsing 

a. The client should be able to import CSV or EXCEL files to be analyzed and 
graphed 

b. The solution should be able to parse data from the files and sort them into data 
structures for better visualization options 

3. Data Visualization/Graphing 

a. Create a system that integrates with Plotly to create and show graphs to the end 
user 

b. The system should be able to handle the following types of graphs and 
computations: dots plots, scatter plots, bar graphs, t-test plots, p-value 
computation, and correlation computation 

c. The graphs should be customizable in regards to the types of graphs, which 
variables are graphed, what color schemes are used, and what data point shapes 
are used 

4. Saving Files 

a. The user should be able to save a current file within the application 

b. The system should store backups of the imported data in a hidden folder for data 
recovery 

5. Sharing Files 

a. Create an export tool that can either share to Google Docs through an external API 
or save it as a picture to their local machine. 

 

3.4 POSSIBLE RISKS AND RISK MANAGEMENT 

Unfamiliarity with both Python and some of the needed packages will become a possible risk for the group, 
though we are already taking steps to remedy the problem with research and practice before beginning on 
developing the actual solution. 

In order to avoid most of the risks that come from developing this solution, we will be communicating with 
one other and the client frequently in order to sort out misunderstandings and confusion as fast as possible. 
By doing so, we are able to mitigate risks faster and more effectively as they come up. 

 

 65 



 

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

The key milestones in our proposed project are the framework, prototype, the functional product, and final 
product stages.  

The framework stage is a key milestone because it will require us to build a theoretical model to implement. 
Since each of us are focusing on individual components of the project, the frameworks section is also 
critical because it will require us to have discussions on how data is passed between each component. The 
test for our frameworks are not programmatic, the test is that the frameworks we have built handle a 
consistent type of data and could work together. 

The prototype stage is a key milestone because it will be the first time a product is delivered. By 
implementing core-features with the frameworks laid out in the previous stage, we will have our first 
demonstration of the product’s components not only working, but working together. Testing will be done 
by passing in data through each component in a few key scenarios.  

The functional product stage is a key milestone because it will be an implementation of all features we have 
been asked to deliver. Testing for these phases are done similar to the prototype stage. Using the same data, 
we test the features of that component, and then test the passing of the data to other components. 

Finally, the final product stage is a key milestone because it will be a final tailoring of what we presented in 
the functional product stage for our client. Feedback will be taken into consideration, and stretch goals, if 
possible will be met. Testing is now for small adjustments, and similar to the functional product stage.  

 

3.6 PROJECT TRACKING PROCEDURES  

Our group is currently using Trello to manage and track progress for this and next semester. We also meet 
with the client regularly to discuss our progress and gain feedback so we know what portions of the project 
need correction and to narrow our next steps.  

 

3.7 EXPECTED RESULTS AND VALIDATION 

The desired outcome is a program that encompasses all of the tasks layed out in 3.3. Each of these tasks 
must behave properly within themselves as well as interact properly with one another. This can be verified 
at a high level using full integration tests in which individuals separate from our team will be asked to 
perform various tasks in a black box testing fashion that incorporate all of our key milestones and features 
that have been laid out in this document. It should be noted that this testing will occur only after rigorous 
Moq testing and unit testing on a low level as well as small scale integration testing at various points of 
development. 

 

 

  

 66 



 

4. Project Timeline, Estimated Resources, and Challenges 

4.1 PROJECT TIMELINE 

Figure 3: Project Timeline 

 

Work on the project on this proposed timeline begins with the GUI, data import module, data parsing 
module, data holding module, and graph module. These components set the groundwork for the project. 
For the future modules to be functional in the scope of the program, it is necessary that these are finished 
first. The GUI is vital for this project as it is the only way for a user to interact with the modules, so two 
team members are set aside for work on it for the first six weeks of the fall. 

After significant progress has been made on the GUI and data can be imported into the program, the 
majority of the team is scheduled to work on the graph and data visualization modules. Because these are 
the key features of the programs, the graphing and data visualization modules will have five of the team’s 
six members dedicated to working on them. After the product has been finalized, rigorous testing will be 
performed on the product. Testing will have already occured throughout development, but this portion of 
the testing will be done to ensure the finished product is airtight. 

 

4.2 FEASIBILITY ASSESSMENT 

The project will be a standalone executable with its own files kept in the program location. It will 
encapsulate and allow for all of the main features previously discussed in this document. However, there 

 67 



 

are some foreseen challenges with this predicted project that have been laid out in the following paragraph 
as well as some preliminary plans to relive these challenges and improve the feasibility of this project. 

The first main challenge will be the formatting and creation of the graphs themselves. Graphs will require 
some statistical knowledge and practice to be able to generate the graphs from the data. There will need to 
be some team research to accomplish this aspect of the project. The second is the variety of Python libraries 
that will be needed to complete this project. Due to the immensity of Python and its libraries, our group has 
varying experience with Python and certain libraries and will need to conduct experiments and research to 
learn how to develop the project using these libraries. These present themselves as the main foreseen 
challenges of our project which is why this project seems to be well within the realm of feasible.  

 

4.3 PERSONNEL EFFORT REQUIREMENTS 

Table 3: Personal Effort Requirements 

 68 

Task Description Time Estimate Difficulty Estimate 

(1 = Easy, 5 = very 
hard) 

GUI Styling Create a desktop application 
that is aesthetically appealing 
and intuitive.  

15 hours over 2 
weeks 

2 

GUI Layout The layout should be easy to 
navigate and the app 
functions easy to understand 

15 hours over 2 
weeks 

2 

Data Import Import data into the app from 
an excel or csv file 

10 hours over 2 
weeks 

1 

Parsing Analyze the imported data to 
find and sort relevant 
variables and measurements 

25 hours over 3 
weeks 

3 

Data Holding The parsed data should be 
temporarily kept in the 
program to be used later 

5 hours over 1 
week 

2 



 

 

 

4.4 OTHER RESOURCE REQUIREMENTS 

This project will be completed entirely using Python and Python libraries such as Plotly. This means that 
the project will not require any physical materials or equipment, other than the computers we use to 
complete the project. The end product, an application, should not take up much space, and will mostly 
likely end up around 10MB. Furthermore, the application will not require a very powerful computer to run. 
This means no additional equipment will be required for our client to use the product since the client has 
computers available to them in their lab.  

 

4.5 FINANCIAL REQUIREMENTS 

This project will only require the use of Python and some Python libraries. A Python install is completely 
free, and the libraries we will use, such as Plotly, are free and open-source. We also plan on using our own 
PCs to complete the project, so there is no additional cost in that regard. The client will not need to buy any 
special equipment to use our end product, as their computers in their lab will suffice. Therefore our project 
will not require any financial resources. 

 

 

 

  

 69 

Saving Files Parsed data will be saved to 
the local storage in a csv file 

10 hours over 2 
weeks 

1 

Backup Versions of program files will 
be backed up in the file 
system once every set time 
interval  

15 hours over 2 
weeks 

3 

Data Visualization Use Plotly to create various 
kinds of graphs. User can 
customize data inputs, colors 
and shapes of data points  

40 hours over 4-5 
weeks 

4 

Sharing Files Export files to Google Drive 
through API to share with 
other users 

20 hours over 2 
weeks 

2 



 

5. Testing and Implementation 

5.1 INTERFACE SPECIFICATIONS 

Our project is primarily software in nature with no real hardware to interface with. However, there is some 
software interfacing that will need to be tested, both from our own creation and from the libraries we opted 
to utilize for this project. 

The first software library we will be interfacing with is Plotly, a graphing based module which will be the 
engine of our graph generation. We will need to do rigorous input and data manipulation testing with the 
module to make sure that it can handle the large and complex amounts of data that will be inputted to the 
application at one time, as well as provide enough options and flexibility to let the user define their own 
constraints on the graph being produced. 

The other software library we will be interfacing with is pandas, a data analysis and manipulation tool for 
Python, and will be our primary module behind data importation. This interface should be able to handle 
wrong files, large files, different types of files (as discussed above and in Lightning Talk 3), while also 
providing a unified and correct output so as to keep the logic between importing data and 
manipulating/graphing the data as simple as possible.  

We will also be utilizing the Google Drive API to export graphing, which will require us to test not only the 
API, but the module we will be writing to connect the user to the API, which includes providing boundary 
and exception testing within our module and its connection to other modules within the system. 

 

5.2 HARDWARE AND SOFTWARE 

Since our project does not include any hardware, this section will focus on only software we will leverage for 
our testing. 

● PyCharm and Python’s unit testing: PyCharm (a python IDE) and Python’s own unit testing library 
will provide a sufficient enough software platform to create and run robust unit testing required for 
each of the modules within our project 

● behave[2] is a Behavior Driven Development module within Python that will be a powerful tool 
within integration testing. It takes documents written in Gherkin[3] (which is a plain-english 
language made up of Given-When-Then statements) and translates them into tests to run. This will 
allow us to create easy to read and understandable tests for anyone not familiar with the project 
which will be vital as we are not the ones to maintain the code after we graduate. 

 

5.3 FUNCTIONAL TESTING 

Functional testing will play a critical role in determining the success of our project. The following is an 
overview of the types of different functional tests that will be conducted for this project. 

 

5.3.1 Unit Tests 

For unit testing, the acceptance criteria is that ALL tests pass in order for the module to be considered 
“valid” and be integrated to the main branch of the repo and included in the project 

 70 



 

NOTE: The testing plan will evolve and expand over time as things become more stable. This is the testing 
plan we have currently with the modules we have planned. 

Table 4: Unit Testing Plan 

5.3.2 Integration Tests 

For integration testing, we will utilize behave and the power it has to test the interactions between the two 

 71 

Module Under Unit Test Testing Plan 

Data Importing (this will be done for each 
individual file module) 

Test for “gold value” (normal behavior) 

Test when given no file path (NULL value) 

Test when given an invalid path 

Test when given a path to wrong type of file 

Test when given an empty file 

Test when given a directory 

Test when data within file is invalid 

Data Visualization (Graphing, Plotly) Test for “gold value” (normal behavior) 

Test when given a NULL value 

Test when given a non-supported type (not a 
pandas data type) 

Test when data has “none” type 

Test when conflicting plots are selected 

Data Export Test for “gold value” (normal behavior) 

Test for when given a NULL value 

Test for when given a non-Plotly graph 

Test for when user asks for a non-supported file 
type to export to 

Test for when user asks for an upscaled resolution 

Test for when user provides invalid Google Drive 
credentials 



 

modules. The project itself will not be considered a stable release until it has passed ALL the integration 
tests. 

An example of an integration test using behave and Gherkin is as follows: 

Given the user provides a valid .csv file 

And has selected the “bar graph” option 

When the user clicks “export to .png” 

Then the system will create a .png file for the user 

This will give us readability and testability between multiple modules. 

 

5.4 NON-FUNCTIONAL TESTING 

While non-functional testing is not of the highest priority for us in our first semester of the project, it is still 
on our minds. For compatibility, we have a desire to make sure that the program we develop is not only 
easy to download and use, but also can be used across multiple platforms. While Windows is the primary 
target, and having the system run natively with Python, we run into errors when we start requiring the 
end-user to download and install Python for the sole use of our program. In order to test these certain 
issues such as performance, usability, and compatibility, we will be heavily relying on field testing with the 
stakeholders to make adjustments based on what they need. Because the field of research our stakeholders 
are in is relatively foreign to the team, we will try to accommodate the standards that we know about, but 
will be looking for feedback in order to make sure our product matches the desires of the users and fits our 
non-functional requirements. 

Part of our non-functional requirements stated above in the design document will be covered through our 
use of the unit testing and integration testing which will help reduce the burden on the stakeholders to 
provide large amounts of feedback to the team. 

 

5.5 PROCESS 

Each functional and nonfunctional requirement feature in Section 2 undergoes the same testing process. In 
each iteration, code is written for that requirement. The code should be independent on other functional 
requirements besides what is passed in as parameters. It is also independent of the GUI. After this, the 
building of a GUI interface for these functions is performed. Once the GUI is completed, testing begins to 
ensure quality of the implementation of a feature of that functional requirement begins, as well as testing of 
the feature working with other features and requirements. Tests that fail are rewritten, and the process 
begins again. After testing is completed, the feature is presented to the client, and feedback is implemented 
into the design. Once there are no revisions, the implementation of the feature is complete. 

 

 

 

 

 

 72 



 

Figure 4: Flow Chart of Testing 

 

5.6 RESULTS 

While the plan for testing has been set out in the few sections preceding this, it has not yet been 
implemented for the project and thus there are no results from it at the moment. A simple demo has been 
created for the software and no testing has occurred for it outside of simple verification that the demo 
software compiles and runs as expected.  

 

 

 

 

  

 73 



 

6. Closing Material 

6.1 CONCLUSION 

Throughout this first semester of our project, the team has been working towards creating a design that 
meets the requirements of our client. We needed to design an application that allows the user to import 
pre-existing data from Excel and manages and visualizes the data. The design also needed to consider that 
the user must be able to customize the data variables used to make-up the graphs as well as the appearance 
of the graphs. Additionally, the design needed to address the need for saving backups of the data and 
allowing the data and visuals to be exported and shared with another person.  

The design we have come up with will result in an easy-to-use application that does not require much 
maintenance, and allows our target client demographic, scientists and researchers, an easier method to 
organize, maintain, and visualize their data. We have worked on and experimented with the base 
components of the application to guarantee our design is feasible and meets our client’s needs. A video 
demonstration of these initially completed basic components can be found in the Final Presentation Slides 
on our team’s website. The video shows that the completion of these components went smoothly and 
indicates that our design is feasible and satisfactory. This design was the best choice for our project and we 
will continue to implement it next semester. We believe that by the end of next semester, we will have 
completed an application that confirms the exceptionality of our design choice and satisfies our client 
immensely. 

 

6.2 REFERENCES 

[1]“How to Buy Prism,” GraphPad. [Online]. Available: https://www.graphpad.com/how-to-buy/. [Accessed: 
26-Apr-2020]. 

[2]“Welcome to behave!,” Welcome to behave! - behave 1.2.7.dev1 documentation. [Online]. Available: 
https://behave.readthedocs.io/en/latest/. [Accessed: 18-Apr-2020]. 

[3]“Cucumber,” Introduction - Cucumber Documentation, 2019. [Online]. Available: 
https://cucumber.netlify.app/docs/guides/overview/. [Accessed: 18-Apr-2020]. 

 

 

 74 


