
Group 29 –
Microbiology Lab
Information
Management and
Visualization System
(GraphKey)
Team Members: Benjamin Vogel, Brittany McPeek,
Samuel Jungman, Rob Reinhard, Kyle Gansen, Ben
Alexander

Technical Advisor: Thomas Daniels
Client: Karrie Daniels

Email: sddec20-29@iastate.edu or bavogel@iastate.edu

mailto:sddec20-29@iastate.edu

Problem Statement
› Many scientists and researchers dedicate large amounts of

time towards organizing, maintaining, and visualizing the
data they collect.

› The solution should be able to automate the process of
organizing, maintaining, and visualizing data.

2

Project Goals Recap
› Intuitive Graphical User Interface
› Support importation and parsing of large amounts of data
› Generate Graphs and Visualizations of the data

› Generate large combinations of data into many graphs
› Allow user to customize the generated graphs
› Perform some statistical analysis on the data

› Support exportation of the generated graphs to Google
Drive and the local machine

› Ensure the system could be maintained by one or two people

3

Project Progress
› One unified application in development

› No more branching prototypes, everything works off of one UI
› Backend is abstracted in a format that makes it easier for the UI

to be changed without affecting the actual business logic
› Has core functionality while also leaving hooks in for expansion
› Can be packaged and distributed as a single “executable”

› Mass graph generation
› User can now select different points of data and have multiple

different graphs generate at the same time
› Data Saving

› Data created by projects, graphs, or user preferences persists
between sessions

4

Reworking the Backend
› Previously, all our projects worked, but were independent of each

other
› Needed to unify graph generation across all projects regardless of if it

was a new experimental GUI or or the old one, the graph generation
would stay the same

› Needed to allow for expansion of new graphs if the client desired
› Needed to support graph customization (colors, shapes, different data

sets, names, titles) while also allowing that customization to be saved

5

Reworking the Backend -
Approach

› Figure - Abstract class each graph
function will implement

› Individual graphs - Implement a
construct_figure() method

› User passes a dictionary that
holds parameters such as names,
data, colors, shapes, etc.) into
the method

› Factory method - GUI calls the
FigureFactory with their desired figure
and gets a Figure object

› No more recursive changes
throughout the GUI, only in the
Factory class

6

Reworking the Frontend
› We previously had several different prototypes of the UI with

different features implemented on each one
› Disjointed UI windows from prototypes are streamlined and

managed by window manager; additionally, a standardized
menu bar also toggles actions

› Needed to rework the UI so it isn’t so cluttered
› We also wanted the user to have the ability to create projects

› So the data and graphs generated for one experiment wouldn’t
get mixed up with another experiment

› So the user could save a project and then open it back up later

7

Reworking the Frontend - Result

8

Technical Challenges
› Speed of the Program

› Running off of a compressed Python Zip File works for
an executable, but has a longer boot time than running
from source

› Importing LARGE excel files can make the program hang
while it imports and categorizes the data

› Customization
› To speed up multiple graph generation, want to save

user’s preferences from session to session
› How do we persistently save information in a way that’s

safe yet also space-sensitive?

9

What’s Next
› Wrap up tweaks, customization, saving templates

› Documentation (user guides, README, etc.)

› Final Report

› Final Poster

› Bug-fixes and small features that can be added within the

next few days/week

10

Email Address
sddec20-29@iastate.edu
bavogel@iastate.edu

11

